Tutorial 6: Diffuse Lighting

In this tutorial I will cover how to light 3D objects using diffuse lighting and DirectX 10. We will start with the code from the previous tutorial and modify it.

The type of diffuse lighting we will be implementing is called directional lighting. Directional lighting is similar to how the Sun illuminates the Earth. It is a light source that is a great distance away and based on the direction it is sending light you can determine the amount of light on any object. However unlike ambient lighting (another lighting model we will cover soon) it will not light up surfaces it does not directly touch.

I picked directional lighting to start with because it is very easy to debug visually. Also since it only requires a direction the formula is simpler than the other types of diffuse lighting such as spot lights and point lights.

The implementation of diffuse lighting in DirectX 10 is done with both vertex and pixel shaders. Diffuse lighting requires just the direction and a normal vector for any polygons that we want to light. The direction is a single vector that you define, and you can calculate the normal for any polygon by using the three vertices that compose the polygon. In this tutorial we will also implement the color of the diffuse light in the lighting equation.


Framework

For this tutorial we will create a new class called LightClass which will represent the light sources in the scenes. LightClass won't actually do anything other than hold the direction and color of the light. We will also remove the TextureShaderClass and replace it with LightShaderClass which handles the light shading on the model. With the addition of the new classes the frame work now looks like the following:

We will start the code section by looking at the HLSL light shader. You will notice that the light shader is just an updated version of the texture shader from the previous tutorial.


Light.fx

////////////////////////////////////////////////////////////////////////////////
// Filename: light.fx
////////////////////////////////////////////////////////////////////////////////


/////////////
// GLOBALS //
/////////////
matrix worldMatrix;
matrix viewMatrix;
matrix projectionMatrix;
Texture2D shaderTexture;

The first difference between the texture shader and the new light shader is the addition of two new global variables that hold the diffuse color and the direction of the light. Before this shader is called these two variables will be set from values in the new LightClass.

float4 diffuseColor;
float3 lightDirection;


///////////////////
// SAMPLE STATES //
///////////////////
SamplerState SampleType
{
    Filter = MIN_MAG_MIP_LINEAR;
    AddressU = Wrap;
    AddressV = Wrap;
};

Both structures now have a 3 float normal vector. The normal vector is used for calculating the amount of light by using the angle between the direction of the normal and the direction of the light.

//////////////
// TYPEDEFS //
//////////////
struct VertexInputType
{
    float4 position : POSITION;
    float2 tex : TEXCOORD0;
    float3 normal : NORMAL;
};

struct PixelInputType
{
    float4 position : SV_POSITION;
    float2 tex : TEXCOORD0;
    float3 normal : NORMAL;
};


////////////////////////////////////////////////////////////////////////////////
// Vertex Shader
////////////////////////////////////////////////////////////////////////////////
PixelInputType LightVertexShader(VertexInputType input)
{
    PixelInputType output;
    
    
    // Change the position vector to be 4 units for proper matrix calculations.
    input.position.w = 1.0f;

    // Calculate the position of the vertex against the world, view, and projection matrices.
    output.position = mul(input.position, worldMatrix);
    output.position = mul(output.position, viewMatrix);
    output.position = mul(output.position, projectionMatrix);
    
    // Store the texture coordinates for the pixel shader.
    output.tex = input.tex;

The normal vector for this vertex is calculated in world space and then normalized before being sent as input into the pixel shader.

    // Calculate the normal vector against the world matrix only.
    output.normal = mul(input.normal, (float3x3)worldMatrix);
	
    // Normalize the normal vector.
    output.normal = normalize(output.normal);

    return output;
}


////////////////////////////////////////////////////////////////////////////////
// Pixel Shader
////////////////////////////////////////////////////////////////////////////////
float4 LightPixelShader(PixelInputType input) : SV_Target
{
    float4 textureColor;
    float3 lightDir;
    float lightIntensity;
    float4 color;


    // Sample the pixel color from the texture using the sampler at this texture coordinate location.
    textureColor = shaderTexture.Sample(SampleType, input.tex);

This is where the lighting equation that was discussed earlier is now implemented. The light intensity value is calculated as the dot product between the normal vector of triangle and the light direction vector.

    // Invert the light direction for calculations.
    lightDir = -lightDirection;

    // Calculate the amount of light on this pixel.
    lightIntensity = saturate(dot(input.normal, lightDir));

And finally the diffuse value of the light is combined with the texture pixel value to produce the color result.

    // Determine the final amount of diffuse color based on the diffuse color combined with the light intensity.
    color = saturate(diffuseColor * lightIntensity);

    // Multiply the texture pixel and the final diffuse color to get the final pixel color result.
    color = color * textureColor;

    return color;
}

The technique stays the same. The only thing that changes is the name of it and the pixel and vertex shader names.

////////////////////////////////////////////////////////////////////////////////
// Technique
////////////////////////////////////////////////////////////////////////////////
technique10 LightTechnique
{
    pass pass0
    {
        SetVertexShader(CompileShader(vs_4_0, LightVertexShader()));
        SetPixelShader(CompileShader(ps_4_0, LightPixelShader()));
        SetGeometryShader(NULL);
    }
}

Lightshaderclass.h

The new LightShaderClass is just the TextureShaderClass from the previous tutorials re-written slightly to incorporate lighting.

////////////////////////////////////////////////////////////////////////////////
// Filename: lightshaderclass.h
////////////////////////////////////////////////////////////////////////////////
#ifndef _LIGHTSHADERCLASS_H_
#define _LIGHTSHADERCLASS_H_


//////////////
// INCLUDES //
//////////////
#include <d3d10.h>
#include <d3dx10math.h>
#include <fstream>
using namespace std;


////////////////////////////////////////////////////////////////////////////////
// Class name: LightShaderClass
////////////////////////////////////////////////////////////////////////////////
class LightShaderClass
{
public:
	LightShaderClass();
	LightShaderClass(const LightShaderClass&);
	~LightShaderClass();

	bool Initialize(ID3D10Device*, HWND);
	void Shutdown();
	void Render(ID3D10Device*, int, D3DXMATRIX, D3DXMATRIX, D3DXMATRIX, ID3D10ShaderResourceView*, D3DXVECTOR3, D3DXVECTOR4);

private:
	bool InitializeShader(ID3D10Device*, HWND, WCHAR*);
	void ShutdownShader();
	void OutputShaderErrorMessage(ID3D10Blob*, HWND, WCHAR*);

	void SetShaderParameters(D3DXMATRIX, D3DXMATRIX, D3DXMATRIX, ID3D10ShaderResourceView*, D3DXVECTOR3, D3DXVECTOR4);
	void RenderShader(ID3D10Device*, int);

private:
	ID3D10Effect* m_effect;
	ID3D10EffectTechnique* m_technique;
	ID3D10InputLayout* m_layout;

	ID3D10EffectMatrixVariable* m_worldMatrixPtr;
	ID3D10EffectMatrixVariable* m_viewMatrixPtr;
	ID3D10EffectMatrixVariable* m_projectionMatrixPtr;
	ID3D10EffectShaderResourceVariable* m_texturePtr;

There are two new private pointers for the direction of the light and the diffuse color of the light. These will be used by this class to set the two new global light variables inside the HLSL shader.

	ID3D10EffectVectorVariable* m_lightDirectionPtr;
	ID3D10EffectVectorVariable* m_diffuseColorPtr;
};

#endif

Lightshaderclass.cpp

////////////////////////////////////////////////////////////////////////////////
// Filename: lightshaderclass.cpp
////////////////////////////////////////////////////////////////////////////////
#include "lightshaderclass.h"


LightShaderClass::LightShaderClass()
{
	m_effect = 0;
	m_technique = 0;
	m_layout = 0;

	m_worldMatrixPtr = 0;
	m_viewMatrixPtr = 0;
	m_projectionMatrixPtr = 0;
	m_texturePtr = 0;

The two new light pointers are set to null in the class constructor.

	m_lightDirectionPtr = 0;
	m_diffuseColorPtr = 0;
}


LightShaderClass::LightShaderClass(const LightShaderClass& other)
{
}


LightShaderClass::~LightShaderClass()
{
}


bool LightShaderClass::Initialize(ID3D10Device* device, HWND hwnd)
{
	bool result;

The new light.fx HLSL file is used as input to initialize the light shader.

	// Initialize the shader that will be used to draw the triangle.
	result = InitializeShader(device, hwnd, L"../Engine/light.fx");
	if(!result)
	{
		return false;
	}

	return true;
}


void LightShaderClass::Shutdown()
{
	// Shutdown the shader effect.
	ShutdownShader();

	return;
}

The Render function now takes in the light direction and light diffuse color as inputs. These variables are then sent into the SetShaderParameters function and finally set inside the shader itself.

void LightShaderClass::Render(ID3D10Device* device, int indexCount, D3DXMATRIX worldMatrix, D3DXMATRIX viewMatrix, D3DXMATRIX projectionMatrix, 
			      ID3D10ShaderResourceView* texture, D3DXVECTOR3 lightDirection, D3DXVECTOR4 diffuseColor)
{
	// Set the shader parameters that it will use for rendering.
	SetShaderParameters(worldMatrix, viewMatrix, projectionMatrix, texture, lightDirection, diffuseColor);

	// Now render the prepared buffers with the shader.
	RenderShader(device, indexCount);

	return;
}


bool LightShaderClass::InitializeShader(ID3D10Device* device, HWND hwnd, WCHAR* filename)
{
	HRESULT result;
	ID3D10Blob* errorMessage;

The polygonLayout variable has been changed to have three elements instead of two. This is so that it can accommodate a normal vector in the layout.

	D3D10_INPUT_ELEMENT_DESC polygonLayout[3];
	unsigned int numElements;
	D3D10_PASS_DESC passDesc;


	// Initialize the error message.
	errorMessage = 0;

	// Load the shader in from the file.
	result = D3DX10CreateEffectFromFile(filename, NULL, NULL, "fx_4_0", D3D10_SHADER_ENABLE_STRICTNESS, 0, 
					    device, NULL, NULL, &m_effect, &errorMessage, NULL);
	if(FAILED(result))
	{
		// If the shader failed to compile it should have writen something to the error message.
		if(errorMessage)
		{
			OutputShaderErrorMessage(errorMessage, hwnd, filename);
		}
		// If there was nothing in the error message then it simply could not find the shader file itself.
		else
		{
			MessageBox(hwnd, filename, L"Missing Shader File", MB_OK);
		}

		return false;
	}

The name of the technique is changed to the new LightTechnique to match the HLSL technique name.

	// Get a pointer to the technique inside the shader.
	m_technique = m_effect->GetTechniqueByName("LightTechnique");
	if(!m_technique)
	{
		return false;
	}

	// Now setup the layout of the data that goes into the shader.
	// This setup needs to match the VertexType stucture in the ModelClass and in the shader.
	polygonLayout[0].SemanticName = "POSITION";
	polygonLayout[0].SemanticIndex = 0;
	polygonLayout[0].Format = DXGI_FORMAT_R32G32B32_FLOAT;
	polygonLayout[0].InputSlot = 0;
	polygonLayout[0].AlignedByteOffset = 0;
	polygonLayout[0].InputSlotClass = D3D10_INPUT_PER_VERTEX_DATA;
	polygonLayout[0].InstanceDataStepRate = 0;

	polygonLayout[1].SemanticName = "TEXCOORD";
	polygonLayout[1].SemanticIndex = 0;
	polygonLayout[1].Format = DXGI_FORMAT_R32G32_FLOAT;
	polygonLayout[1].InputSlot = 0;
	polygonLayout[1].AlignedByteOffset = D3D10_APPEND_ALIGNED_ELEMENT;
	polygonLayout[1].InputSlotClass = D3D10_INPUT_PER_VERTEX_DATA;
	polygonLayout[1].InstanceDataStepRate = 0;

One of the major changes to the shader initialization is here in the polygonLayout. We add a third element for the normal vector that will be used for lighting. The semantic name is NORMAL and the format is the regular DXGI_FORMAT_R32G32B32_FLOAT which handles 3 floats for the x, y, and z of the normal vector. The layout will now match the expected input to the HLSL vertex shader.

	polygonLayout[2].SemanticName = "NORMAL";
	polygonLayout[2].SemanticIndex = 0;
	polygonLayout[2].Format = DXGI_FORMAT_R32G32B32_FLOAT;
	polygonLayout[2].InputSlot = 0;
	polygonLayout[2].AlignedByteOffset = D3D10_APPEND_ALIGNED_ELEMENT;
	polygonLayout[2].InputSlotClass = D3D10_INPUT_PER_VERTEX_DATA;
	polygonLayout[2].InstanceDataStepRate = 0;

	// Get a count of the elements in the layout.
	numElements = sizeof(polygonLayout) / sizeof(polygonLayout[0]);

	// Get the description of the first pass described in the shader technique.
	m_technique->GetPassByIndex(0)->GetDesc(&passDesc);

	// Create the input layout.
	result = device->CreateInputLayout(polygonLayout, numElements, passDesc.pIAInputSignature, passDesc.IAInputSignatureSize, &m_layout);
	if(FAILED(result))
	{
		return false;
	}

	// Get pointers to the three matrices inside the shader so we can update them from this class.
	m_worldMatrixPtr = m_effect->GetVariableByName("worldMatrix")->AsMatrix();
	m_viewMatrixPtr = m_effect->GetVariableByName("viewMatrix")->AsMatrix();
	m_projectionMatrixPtr = m_effect->GetVariableByName("projectionMatrix")->AsMatrix();

	// Get pointer to the texture resource inside the shader.
	m_texturePtr = m_effect->GetVariableByName("shaderTexture")->AsShaderResource();

The final addition to this function is the light variable pointers. The HLSL light shader requires a direction and a diffuse color vector. We supply that to the shader by creating two pointers that point to the lightDirection and diffuseColor variable inside shader. Now when we get the light data passed into this class we can then use these pointers to send that data into the shader.

	// Get pointers to the light direction and diffuse color variables inside the shader.
	m_lightDirectionPtr = m_effect->GetVariableByName("lightDirection")->AsVector();
	m_diffuseColorPtr = m_effect->GetVariableByName("diffuseColor")->AsVector();

	return true;
}


void LightShaderClass::ShutdownShader()
{

The two new light pointers are now released in the ShutdownShader function.

	// Release the light pointers.
	m_lightDirectionPtr = 0;
	m_diffuseColorPtr = 0;

	// Release the pointer to the texture in the shader file.
	m_texturePtr = 0;

	// Release the pointers to the matrices inside the shader.
	m_worldMatrixPtr = 0;
	m_viewMatrixPtr = 0;
	m_projectionMatrixPtr = 0;

	// Release the pointer to the shader layout.
	if(m_layout)
	{
		m_layout->Release();
		m_layout = 0;
	}

	// Release the pointer to the shader technique.
	m_technique = 0;

	// Release the pointer to the shader.
	if(m_effect)
	{
		m_effect->Release();
		m_effect = 0;
	}

	return;
}


void LightShaderClass::OutputShaderErrorMessage(ID3D10Blob* errorMessage, HWND hwnd, WCHAR* shaderFilename)
{
	char* compileErrors;
	unsigned long bufferSize, i;
	ofstream fout;


	// Get a pointer to the error message text buffer.
	compileErrors = (char*)(errorMessage->GetBufferPointer());

	// Get the length of the message.
	bufferSize = errorMessage->GetBufferSize();

	// Open a file to write the error message to.
	fout.open("shader-error.txt");

	// Write out the error message.
	for(i=0; i<bufferSize; i++)
	{
		fout << compileErrors[i];
	}

	// Close the file.
	fout.close();

	// Release the error message.
	errorMessage->Release();
	errorMessage = 0;

	// Pop a message up on the screen to notify the user to check the text file for compile errors.
	MessageBox(hwnd, L"Error compiling shader.  Check shader-error.txt for message.", shaderFilename, MB_OK);

	return;
}

The SetShaderParameters function now takes in lightDirection and diffuseColor as inputs. These variables are then set inside the shader using the two new m_lightDirectionPtr and m_diffuseColorPtr pointers.

void LightShaderClass::SetShaderParameters(D3DXMATRIX worldMatrix, D3DXMATRIX viewMatrix, D3DXMATRIX projectionMatrix, 
					   ID3D10ShaderResourceView* texture, D3DXVECTOR3 lightDirection, D3DXVECTOR4 diffuseColor)
{
	// Set the world matrix variable inside the shader.
	m_worldMatrixPtr->SetMatrix((float*)&worldMatrix);

	// Set the view matrix variable inside the shader.
	m_viewMatrixPtr->SetMatrix((float*)&viewMatrix);

	// Set the projection matrix variable inside the shader.
	m_projectionMatrixPtr->SetMatrix((float*)&projectionMatrix);

	// Bind the texture.
	m_texturePtr->SetResource(texture);

	// Set the direction of the light inside the shader.
	m_lightDirectionPtr->SetFloatVector((float*)&lightDirection);

	// Set the diffuse color of the light inside the shader.
	m_diffuseColorPtr->SetFloatVector((float*)&diffuseColor);

	return;
}


void LightShaderClass::RenderShader(ID3D10Device* device, int indexCount)
{
	D3D10_TECHNIQUE_DESC techniqueDesc;
	unsigned int i;
	

	// Set the input layout.
	device->IASetInputLayout(m_layout);

	// Get the description structure of the technique from inside the shader so it can be used for rendering.
	m_technique->GetDesc(&techniqueDesc);

	// Go through each pass in the technique (should be just one currently) and render the triangles.
	for(i=0; i<techniqueDesc.Passes; ++i)
	{
		m_technique->GetPassByIndex(i)->Apply(0);
		device->DrawIndexed(indexCount, 0, 0);
	}

	return;
}

Modelclass.h

The ModelClass has been slightly modified to handle lighting components.

////////////////////////////////////////////////////////////////////////////////
// Filename: modelclass.h
////////////////////////////////////////////////////////////////////////////////
#ifndef _MODELCLASS_H_
#define _MODELCLASS_H_


///////////////////////
// MY CLASS INCLUDES //
///////////////////////
#include "textureclass.h"


////////////////////////////////////////////////////////////////////////////////
// Class name: ModelClass
////////////////////////////////////////////////////////////////////////////////
class ModelClass
{
private:

The VertexType structure now has a normal vector to accommodate lighting.

	struct VertexType
	{
		D3DXVECTOR3 position;
		D3DXVECTOR2 texture;
		D3DXVECTOR3 normal;
	};

public:
	ModelClass();
	ModelClass(const ModelClass&);
	~ModelClass();

	bool Initialize(ID3D10Device*, WCHAR*);
	void Shutdown();
	void Render(ID3D10Device*);

	int GetIndexCount();
	ID3D10ShaderResourceView* GetTexture();

private:
	bool InitializeBuffers(ID3D10Device*);
	void ShutdownBuffers();
	void RenderBuffers(ID3D10Device*);

	bool LoadTexture(ID3D10Device*, WCHAR*);
	void ReleaseTexture();

private:
	ID3D10Buffer *m_vertexBuffer, *m_indexBuffer;
	int m_vertexCount, m_indexCount;
	TextureClass* m_Texture;
};

#endif

Modelclass.cpp

////////////////////////////////////////////////////////////////////////////////
// Filename: modelclass.cpp
////////////////////////////////////////////////////////////////////////////////
#include "modelclass.h"


ModelClass::ModelClass()
{
	m_vertexBuffer = 0;
	m_indexBuffer = 0;
	m_Texture = 0;
}


ModelClass::ModelClass(const ModelClass& other)
{
}


ModelClass::~ModelClass()
{
}


bool ModelClass::Initialize(ID3D10Device* device, WCHAR* textureFilename)
{
	bool result;


	// Initialize the vertex and index buffer that hold the geometry for the triangle.
	result = InitializeBuffers(device);
	if(!result)
	{
		return false;
	}

	// Load the texture for this model.
	result = LoadTexture(device, textureFilename);
	if(!result)
	{
		return false;
	}

	return true;
}


void ModelClass::Shutdown()
{
	// Release the model texture.
	ReleaseTexture();

	// Release the vertex and index buffers.
	ShutdownBuffers();

	return;
}


void ModelClass::Render(ID3D10Device* device)
{
	// Put the vertex and index buffers on the graphics pipeline to prepare them for drawing.
	RenderBuffers(device);

	return;
}


int ModelClass::GetIndexCount()
{
	return m_indexCount;
}


ID3D10ShaderResourceView* ModelClass::GetTexture()
{
	return m_Texture->GetTexture();
}


bool ModelClass::InitializeBuffers(ID3D10Device* device)
{
	VertexType* vertices;
	unsigned long* indices;
	D3D10_BUFFER_DESC vertexBufferDesc, indexBufferDesc;
	D3D10_SUBRESOURCE_DATA vertexData, indexData;
	HRESULT result;

	
	// Set the number of vertices in the vertex array.
	m_vertexCount = 3;

	// Set the number of indices in the index array.
	m_indexCount = 3;

	// Create the vertex array.
	vertices = new VertexType[m_vertexCount];
	if(!vertices)
	{
		return false;
	}

	// Create the index array.
	indices = new unsigned long[m_indexCount];
	if(!indices)
	{
		return false;
	}

The only change to the InitializeBuffers function is here in the vertex setup. Each vertex now has normals associated with it for lighting calculations. The normal is a line that is perpendicular to the face of the polygon so that the exact direction the face is pointing can be calculated. For simplicity purposes I set the normal for each vertex along the Z axis by setting each Z component to -1.0f which makes the normal point towards the viewer.

	// Load the vertex array with data.
	vertices[0].position = D3DXVECTOR3(-1.0f, -1.0f, 0.0f);  // Bottom left.
	vertices[0].texture = D3DXVECTOR2(0.0f, 1.0f);
	vertices[0].normal = D3DXVECTOR3(0.0f, 0.0f, -1.0f);

	vertices[1].position = D3DXVECTOR3(0.0f, 1.0f, 0.0f);  // Top middle.
	vertices[1].texture = D3DXVECTOR2(0.5f, 0.0f);
	vertices[1].normal = D3DXVECTOR3(0.0f, 0.0f, -1.0f);

	vertices[2].position = D3DXVECTOR3(1.0f, -1.0f, 0.0f);  // Bottom right.
	vertices[2].texture = D3DXVECTOR2(1.0f, 1.0f);
	vertices[2].normal = D3DXVECTOR3(0.0f, 0.0f, -1.0f);

	// Load the index array with data.
	indices[0] = 0;  // Bottom left.
	indices[1] = 1;  // Top middle.
	indices[2] = 2;  // Bottom right.

	// Set up the description of the vertex buffer.
	vertexBufferDesc.Usage = D3D10_USAGE_DEFAULT;
	vertexBufferDesc.ByteWidth = sizeof(VertexType) * m_vertexCount;
	vertexBufferDesc.BindFlags = D3D10_BIND_VERTEX_BUFFER;
	vertexBufferDesc.CPUAccessFlags = 0;
	vertexBufferDesc.MiscFlags = 0;

	// Give the subresource structure a pointer to the vertex data.
	vertexData.pSysMem = vertices;

	// Now finally create the vertex buffer.
	result = device->CreateBuffer(&vertexBufferDesc, &vertexData, &m_vertexBuffer);
	if(FAILED(result))
	{
		return false;
	}

	// Set up the description of the index buffer.
	indexBufferDesc.Usage = D3D10_USAGE_DEFAULT;
	indexBufferDesc.ByteWidth = sizeof(unsigned long) * m_indexCount;
	indexBufferDesc.BindFlags = D3D10_BIND_INDEX_BUFFER;
	indexBufferDesc.CPUAccessFlags = 0;
	indexBufferDesc.MiscFlags = 0;

	// Give the subresource structure a pointer to the index data.
	indexData.pSysMem = indices;

	// Create the index buffer.
	result = device->CreateBuffer(&indexBufferDesc, &indexData, &m_indexBuffer);
	if(FAILED(result))
	{
		return false;
	}

	// Release the arrays now that the vertex and index buffers have been created and loaded.
	delete [] vertices;
	vertices = 0;

	delete [] indices;
	indices = 0;

	return true;
}


void ModelClass::ShutdownBuffers()
{
	// Release the index buffer.
	if(m_indexBuffer)
	{
		m_indexBuffer->Release();
		m_indexBuffer = 0;
	}

	// Release the vertex buffer.
	if(m_vertexBuffer)
	{
		m_vertexBuffer->Release();
		m_vertexBuffer = 0;
	}

	return;
}


void ModelClass::RenderBuffers(ID3D10Device* device)
{
	unsigned int stride;
	unsigned int offset;


	// Set vertex buffer stride and offset.
	stride = sizeof(VertexType); 
	offset = 0;
    
	// Set the vertex buffer to active in the input assembler so it can be rendered.
	device->IASetVertexBuffers(0, 1, &m_vertexBuffer, &stride, &offset);

	// Set the index buffer to active in the input assembler so it can be rendered.
	device->IASetIndexBuffer(m_indexBuffer, DXGI_FORMAT_R32_UINT, 0);

	// Set the type of primitive that should be rendered from this vertex buffer, in this case triangles.
	device->IASetPrimitiveTopology(D3D10_PRIMITIVE_TOPOLOGY_TRIANGLELIST);

	return;
}


bool ModelClass::LoadTexture(ID3D10Device* device, WCHAR* filename)
{
	bool result;


	// Create the texture object.
	m_Texture = new TextureClass;
	if(!m_Texture)
	{
		return false;
	}

	// Initialize the texture object.
	result = m_Texture->Initialize(device, filename);
	if(!result)
	{
		return false;
	}

	return true;
}


void ModelClass::ReleaseTexture()
{
	// Release the texture object.
	if(m_Texture)
	{
		m_Texture->Shutdown();
		delete m_Texture;
		m_Texture = 0;
	}

	return;
}

Lightclass.h

Now we will look at the new light class which is very simple. Its purpose is only to maintain the direction and color of lights.

////////////////////////////////////////////////////////////////////////////////
// Filename: lightclass.h
////////////////////////////////////////////////////////////////////////////////
#ifndef _LIGHTCLASS_H_
#define _LIGHTCLASS_H_


//////////////
// INCLUDES //
//////////////
#include <d3dx10math.h>


////////////////////////////////////////////////////////////////////////////////
// Class name: LightClass
////////////////////////////////////////////////////////////////////////////////
class LightClass
{
public:
	LightClass();
	LightClass(const LightClass&);
	~LightClass();

	void SetDiffuseColor(float, float, float, float);
	void SetDirection(float, float, float);

	D3DXVECTOR4 GetDiffuseColor();
	D3DXVECTOR3 GetDirection();

private:
	D3DXVECTOR4 m_diffuseColor;
	D3DXVECTOR3 m_direction;
};

#endif

Lightclass.cpp

////////////////////////////////////////////////////////////////////////////////
// Filename: lightclass.cpp
////////////////////////////////////////////////////////////////////////////////
#include "lightclass.h"


LightClass::LightClass()
{
}


LightClass::LightClass(const LightClass& other)
{
}


LightClass::~LightClass()
{
}


void LightClass::SetDiffuseColor(float red, float green, float blue, float alpha)
{
	m_diffuseColor = D3DXVECTOR4(red, green, blue, alpha);
	return;
}


void LightClass::SetDirection(float x, float y, float z)
{
	m_direction = D3DXVECTOR3(x, y, z);
	return;
}


D3DXVECTOR4 LightClass::GetDiffuseColor()
{
	return m_diffuseColor;
}


D3DXVECTOR3 LightClass::GetDirection()
{
	return m_direction;
}

Graphicsclass.h

////////////////////////////////////////////////////////////////////////////////
// Filename: graphicsclass.h
////////////////////////////////////////////////////////////////////////////////
#ifndef _GRAPHICSCLASS_H_
#define _GRAPHICSCLASS_H_


///////////////////////
// MY CLASS INCLUDES //
///////////////////////
#include "d3dclass.h"
#include "cameraclass.h"
#include "modelclass.h"

The GraphicsClass now has two new includes for the LightShaderClass and the LightClass.

#include "lightshaderclass.h"
#include "lightclass.h"


/////////////
// GLOBALS //
/////////////
const bool FULL_SCREEN = true;
const bool VSYNC_ENABLED = true;
const float SCREEN_DEPTH = 1000.0f;
const float SCREEN_NEAR = 0.1f;


////////////////////////////////////////////////////////////////////////////////
// Class name: GraphicsClass
////////////////////////////////////////////////////////////////////////////////
class GraphicsClass
{
public:
	GraphicsClass();
	GraphicsClass(const GraphicsClass&);
	~GraphicsClass();

	bool Initialize(int, int, HWND);
	void Shutdown();
	bool Frame();

private:

Render now takes a float value as input.

	bool Render(float);

private:
	D3DClass* m_D3D;
	CameraClass* m_Camera;
	ModelClass* m_Model;

There are two new private variables for the light shader and the light object.

	LightShaderClass* m_LightShader;
	LightClass* m_Light;
};

#endif

Graphicsclass.cpp

////////////////////////////////////////////////////////////////////////////////
// Filename: graphicsclass.cpp
////////////////////////////////////////////////////////////////////////////////
#include "graphicsclass.h"


GraphicsClass::GraphicsClass()
{
	m_D3D = 0;
	m_Camera = 0;
	m_Model = 0;

The light shader and light object are set to null in the class constructor.

	m_LightShader = 0;
	m_Light = 0;
}


GraphicsClass::GraphicsClass(const GraphicsClass& other)
{
}


GraphicsClass::~GraphicsClass()
{
}


bool GraphicsClass::Initialize(int screenWidth, int screenHeight, HWND hwnd)
{
	bool result;


	// Create the Direct3D object.
	m_D3D = new D3DClass;
	if(!m_D3D)
	{
		return false;
	}

	// Initialize the Direct3D object.
	result = m_D3D->Initialize(screenWidth, screenHeight, VSYNC_ENABLED, hwnd, FULL_SCREEN, SCREEN_DEPTH, SCREEN_NEAR);
	if(!result)
	{
		MessageBox(hwnd, L"Could not initialize Direct3D.", L"Error", MB_OK);
		return false;
	}

	// Create the camera object.
	m_Camera = new CameraClass;
	if(!m_Camera)
	{
		return false;
	}

	// Set the initial position of the camera.
	m_Camera->SetPosition(0.0f, 0.0f, -10.0f);
	
	// Create the model object.
	m_Model = new ModelClass;
	if(!m_Model)
	{
		return false;
	}

	// Initialize the model object.
	result = m_Model->Initialize(m_D3D->GetDevice(), L"../Engine/data/seafloor.dds");
	if(!result)
	{
		MessageBox(hwnd, L"Could not initialize the model object.", L"Error", MB_OK);
		return false;
	}

The new light shader object is created and initialized here.

	// Create the light shader object.
	m_LightShader = new LightShaderClass;
	if(!m_LightShader)
	{
		return false;
	}

	// Initialize the light shader object.
	result = m_LightShader->Initialize(m_D3D->GetDevice(), hwnd);
	if(!result)
	{
		MessageBox(hwnd, L"Could not initialize the light shader object.", L"Error", MB_OK);
		return false;
	}

The new light object is created here.

	// Create the light object.
	m_Light = new LightClass;
	if(!m_Light)
	{
		return false;
	}

The color of the light is set to purple and the light direction is set to point down the positive Z axis.

	// Initialize the light object.
	m_Light->SetDiffuseColor(1.0f, 0.0f, 1.0f, 1.0f);
	m_Light->SetDirection(0.0f, 0.0f, 1.0f);

	return true;
}


void GraphicsClass::Shutdown()
{

The Shutdown function releases the new light and light shader objects.

	// Release the light object.
	if(m_Light)
	{
		delete m_Light;
		m_Light = 0;
	}

	// Release the light shader object.
	if(m_LightShader)
	{
		m_LightShader->Shutdown();
		delete m_LightShader;
		m_LightShader = 0;
	}

	// Release the model object.
	if(m_Model)
	{
		m_Model->Shutdown();
		delete m_Model;
		m_Model = 0;
	}

	// Release the camera object.
	if(m_Camera)
	{
		delete m_Camera;
		m_Camera = 0;
	}

	// Release the D3D object.
	if(m_D3D)
	{
		m_D3D->Shutdown();
		delete m_D3D;
		m_D3D = 0;
	}

	return;
}


bool GraphicsClass::Frame()
{
	bool result;

We add a new static variable to hold an updated rotation value each frame that will be passed into the Render function.

	static float rotation = 0.0f;


	// Update the rotation variable each frame.
	rotation += (float)D3DX_PI * 0.01f;
	if(rotation > 360.0f)
	{
		rotation -= 360.0f;
	}

	// Render the graphics scene.
	result = Render(rotation);
	if(!result)
	{
		return false;
	}

	return true;
}


bool GraphicsClass::Render(float rotation)
{
	D3DXMATRIX worldMatrix, viewMatrix, projectionMatrix;


	// Clear the buffers to begin the scene.
	m_D3D->BeginScene(0.0f, 0.0f, 0.0f, 1.0f);

	// Generate the view matrix based on the camera's position.
	m_Camera->Render();

	// Get the world, view, and projection matrices from the camera and d3d objects.
	m_Camera->GetViewMatrix(viewMatrix);
	m_D3D->GetWorldMatrix(worldMatrix);
	m_D3D->GetProjectionMatrix(projectionMatrix);

Here we rotate the world matrix by the rotation value so that when we render the triangle using this updated world matrix it will spin the triangle by the rotation amount.

	// Rotate the world matrix by the rotation value so that the triangle will spin.
	D3DXMatrixRotationY(&worldMatrix, rotation);

	// Put the model vertex and index buffers on the graphics pipeline to prepare them for drawing.
	m_Model->Render(m_D3D->GetDevice());

The light shader is called here to render the triangle. The new light object is used to send the diffuse light color and light direction into the Render function so that the shader has access to those values.

	// Render the model using the light shader.
	m_LightShader->Render(m_D3D->GetDevice(), m_Model->GetIndexCount(), worldMatrix, viewMatrix, projectionMatrix, m_Model->GetTexture(),
			      m_Light->GetDirection(), m_Light->GetDiffuseColor());
	
	// Present the rendered scene to the screen.
	m_D3D->EndScene();

	return true;
}

Summary

With a few changes to the code we were able to implement some basic directional lighting. Make sure you understand how normal vectors work and why they are important to calculating lighting on polygon faces. Note that the back of the spinning triangle will not light up since we have back face culling enabled in our D3DClass.


To Do Exercises

1. Recompile the project and ensure you get a spinning textured triangle that is being illuminated by a purple light. Press escape to quit.

2. Comment out "color = color * textureColor;" in the pixel shader so that the shaderTexture is no longer used and you should see the lighting effect without the texture.

3. Change the color of the light to green at the m_Light->SetDiffuseColor line of code in the GraphicsClass.

4. Change the direction of the light to go down the positive and the negative X axis. You might want to change the speed of the rotation also.


Source Code

Visual Studio 2010 Project: dx10tut06.zip

Source Only: dx10src06.zip

Executable Only: dx10exe06.zip

Back to Tutorial Index