This tutorial will be an introduction to using ambient lighting in OpenGL 4.0 using GLSL.
I will explain ambient lighting using an example.
Imagine you are in a room and the only light source is sunlight which is coming in from a window.
The sunlight doesn't directly point at all the surfaces in the room but everything in the room is illuminated to a certain extent due to bouncing light particles.
This lighting effect on the surfaces that the sun isn't directly pointing at is called ambient lighting.
Now to simulate ambient lighting we use a very simple equation.
We just set each pixel to be the value of the ambient light at the start of the pixel shader.
From that point forward all other operations just add their value to the ambient color.
This way we ensure everything is at a minimum using the ambient color value.
Ambient lighting also adds far more realism to a 3D scene.
Take for example the following picture that has only diffuse lighting pointing down the positive X axis at a cube:
The image produced doesn't look realistic because ambient light is almost always everywhere giving everything their proper shape even if it is only slightly illuminated.
Now if we just add 15% ambient white light to the same scene, we get the following image instead:
This now gives us a more realistic lighting effect that we as humans are used to.
We will now look at the changes to the code to implement ambient lighting.
This tutorial is built on the previous tutorial that used diffuse lighting.
We will now add the ambient component with just a few changes.
Light.vs
The light vertex shader has stayed the same for this tutorial.
////////////////////////////////////////////////////////////////////////////////
// Filename: light.vs
////////////////////////////////////////////////////////////////////////////////
#version 400
/////////////////////
// INPUT VARIABLES //
/////////////////////
in vec3 inputPosition;
in vec2 inputTexCoord;
in vec3 inputNormal;
//////////////////////
// OUTPUT VARIABLES //
//////////////////////
out vec2 texCoord;
out vec3 normal;
///////////////////////
// UNIFORM VARIABLES //
///////////////////////
uniform mat4 worldMatrix;
uniform mat4 viewMatrix;
uniform mat4 projectionMatrix;
////////////////////////////////////////////////////////////////////////////////
// Vertex Shader
////////////////////////////////////////////////////////////////////////////////
void main(void)
{
// Calculate the position of the vertex against the world, view, and projection matrices.
gl_Position = vec4(inputPosition, 1.0f) * worldMatrix;
gl_Position = gl_Position * viewMatrix;
gl_Position = gl_Position * projectionMatrix;
// Store the texture coordinates for the pixel shader.
texCoord = inputTexCoord;
// Calculate the normal vector against the world matrix only.
normal = inputNormal * mat3(worldMatrix);
// Normalize the normal vector.
normal = normalize(normal);
}
Light.ps
////////////////////////////////////////////////////////////////////////////////
// Filename: light.ps
////////////////////////////////////////////////////////////////////////////////
#version 400
/////////////////////
// INPUT VARIABLES //
/////////////////////
in vec2 texCoord;
in vec3 normal;
//////////////////////
// OUTPUT VARIABLES //
//////////////////////
out vec4 outputColor;
First, we add a 4-float ambient light uniform variable so that the ambient light color can be set in this shader by outside classes.
///////////////////////
// UNIFORM VARIABLES //
///////////////////////
uniform sampler2D shaderTexture;
uniform vec3 lightDirection;
uniform vec4 diffuseLightColor;
uniform vec4 ambientLight;
////////////////////////////////////////////////////////////////////////////////
// Pixel Shader
////////////////////////////////////////////////////////////////////////////////
void main(void)
{
vec4 textureColor;
vec4 color;
vec3 lightDir;
float lightIntensity;
// Sample the pixel color from the texture using the sampler at this texture coordinate location.
textureColor = texture(shaderTexture, texCoord);
We set the output color value to the base ambient color. All pixels will now be illuminated by a minimum of the ambient color value.
// Set the default output color to the ambient light value for all pixels.
color = ambientLight;
// Invert the light direction for calculations.
lightDir = -lightDirection;
// Calculate the amount of light on this pixel.
lightIntensity = clamp(dot(normal, lightDir), 0.0f, 1.0f);
Check if the N dot L is greater than zero.
If it is then add the diffuse color to the ambient color.
If not then you need to be careful to not add the diffuse color.
The reason being is that the diffuse color could be negative and it will subtract away some of the ambient color in the addition which is not correct.
if(lightIntensity > 0.0f)
{
// Determine the final diffuse color based on the diffuse color and the amount of light intensity.
color += (diffuseLightColor * lightIntensity);
}
Make sure to clamp the final output light color since the combination of ambient and diffuse could have been greater than 1.
// Clamp the final light color.
color = clamp(color, 0.0f, 1.0f);
Finally combine the resulting light value with the texture pixel to produce the final result.
// Multiply the texture pixel and the final diffuse color to get the final pixel color result.
outputColor = color * textureColor;
}
Lightshaderclass.h
////////////////////////////////////////////////////////////////////////////////
// Filename: lightshaderclass.h
////////////////////////////////////////////////////////////////////////////////
#ifndef _LIGHTSHADERCLASS_H_
#define _LIGHTSHADERCLASS_H_
//////////////
// INCLUDES //
//////////////
#include <iostream>
using namespace std;
///////////////////////
// MY CLASS INCLUDES //
///////////////////////
#include "openglclass.h"
////////////////////////////////////////////////////////////////////////////////
// Class name: LightShaderClass
////////////////////////////////////////////////////////////////////////////////
class LightShaderClass
{
public:
LightShaderClass();
LightShaderClass(const LightShaderClass&);
~LightShaderClass();
bool Initialize(OpenGLClass*);
void Shutdown();
The SetShaderParameters now takes an extra float array as input for the ambient light value.
bool SetShaderParameters(float*, float*, float*, float*, float*, float*);
private:
bool InitializeShader(char*, char*);
void ShutdownShader();
char* LoadShaderSourceFile(char*);
void OutputShaderErrorMessage(unsigned int, char*);
void OutputLinkerErrorMessage(unsigned int);
private:
OpenGLClass* m_OpenGLPtr;
unsigned int m_vertexShader;
unsigned int m_fragmentShader;
unsigned int m_shaderProgram;
};
#endif
Lightshaderclass.cpp
////////////////////////////////////////////////////////////////////////////////
// Filename: lightshaderclass.cpp
////////////////////////////////////////////////////////////////////////////////
#include "lightshaderclass.h"
LightShaderClass::LightShaderClass()
{
m_OpenGLPtr = 0;
}
LightShaderClass::LightShaderClass(const LightShaderClass& other)
{
}
LightShaderClass::~LightShaderClass()
{
}
bool LightShaderClass::Initialize(OpenGLClass* OpenGL)
{
char vsFilename[128];
char psFilename[128];
bool result;
// Store the pointer to the OpenGL object.
m_OpenGLPtr = OpenGL;
// Set the location and names of the shader files.
strcpy(vsFilename, "../Engine/light.vs");
strcpy(psFilename, "../Engine/light.ps");
// Initialize the vertex and pixel shaders.
result = InitializeShader(vsFilename, psFilename);
if(!result)
{
return false;
}
return true;
}
void LightShaderClass::Shutdown()
{
// Shutdown the shader.
ShutdownShader();
// Release the pointer to the OpenGL object.
m_OpenGLPtr = 0;
return;
}
bool LightShaderClass::InitializeShader(char* vsFilename, char* fsFilename)
{
const char* vertexShaderBuffer;
const char* fragmentShaderBuffer;
int status;
// Load the vertex shader source file into a text buffer.
vertexShaderBuffer = LoadShaderSourceFile(vsFilename);
if(!vertexShaderBuffer)
{
return false;
}
// Load the fragment shader source file into a text buffer.
fragmentShaderBuffer = LoadShaderSourceFile(fsFilename);
if(!fragmentShaderBuffer)
{
return false;
}
// Create a vertex and fragment shader object.
m_vertexShader = m_OpenGLPtr->glCreateShader(GL_VERTEX_SHADER);
m_fragmentShader = m_OpenGLPtr->glCreateShader(GL_FRAGMENT_SHADER);
// Copy the shader source code strings into the vertex and fragment shader objects.
m_OpenGLPtr->glShaderSource(m_vertexShader, 1, &vertexShaderBuffer, NULL);
m_OpenGLPtr->glShaderSource(m_fragmentShader, 1, &fragmentShaderBuffer, NULL);
// Release the vertex and fragment shader buffers.
delete [] vertexShaderBuffer;
vertexShaderBuffer = 0;
delete [] fragmentShaderBuffer;
fragmentShaderBuffer = 0;
// Compile the shaders.
m_OpenGLPtr->glCompileShader(m_vertexShader);
m_OpenGLPtr->glCompileShader(m_fragmentShader);
// Check to see if the vertex shader compiled successfully.
m_OpenGLPtr->glGetShaderiv(m_vertexShader, GL_COMPILE_STATUS, &status);
if(status != 1)
{
// If it did not compile then write the syntax error message out to a text file for review.
OutputShaderErrorMessage(m_vertexShader, vsFilename);
return false;
}
// Check to see if the fragment shader compiled successfully.
m_OpenGLPtr->glGetShaderiv(m_fragmentShader, GL_COMPILE_STATUS, &status);
if(status != 1)
{
// If it did not compile then write the syntax error message out to a text file for review.
OutputShaderErrorMessage(m_fragmentShader, fsFilename);
return false;
}
// Create a shader program object.
m_shaderProgram = m_OpenGLPtr->glCreateProgram();
// Attach the vertex and fragment shader to the program object.
m_OpenGLPtr->glAttachShader(m_shaderProgram, m_vertexShader);
m_OpenGLPtr->glAttachShader(m_shaderProgram, m_fragmentShader);
// Bind the shader input variables.
m_OpenGLPtr->glBindAttribLocation(m_shaderProgram, 0, "inputPosition");
m_OpenGLPtr->glBindAttribLocation(m_shaderProgram, 1, "inputTexCoord");
m_OpenGLPtr->glBindAttribLocation(m_shaderProgram, 2, "inputNormal");
// Link the shader program.
m_OpenGLPtr->glLinkProgram(m_shaderProgram);
// Check the status of the link.
m_OpenGLPtr->glGetProgramiv(m_shaderProgram, GL_LINK_STATUS, &status);
if(status != 1)
{
// If it did not link then write the syntax error message out to a text file for review.
OutputLinkerErrorMessage(m_shaderProgram);
return false;
}
return true;
}
void LightShaderClass::ShutdownShader()
{
// Detach the vertex and fragment shaders from the program.
m_OpenGLPtr->glDetachShader(m_shaderProgram, m_vertexShader);
m_OpenGLPtr->glDetachShader(m_shaderProgram, m_fragmentShader);
// Delete the vertex and fragment shaders.
m_OpenGLPtr->glDeleteShader(m_vertexShader);
m_47OpenGLPtr->glDeleteShader(m_fragmentShader);
// Delete the shader program.
m_OpenGLPtr->glDeleteProgram(m_shaderProgram);
return;
}
char* LightShaderClass::LoadShaderSourceFile(char* filename)
{
FILE* filePtr;
char* buffer;
long fileSize, count;
int error;
// Open the shader file for reading in text modee.
filePtr = fopen(filename, "r");
if(filePtr == NULL)
{
return 0;
}
// Go to the end of the file and get the size of the file.
fseek(filePtr, 0, SEEK_END);
fileSize = ftell(filePtr);
// Initialize the buffer to read the shader source file into, adding 1 for an extra null terminator.
buffer = new char[fileSize + 1];
// Return the file pointer back to the beginning of the file.
fseek(filePtr, 0, SEEK_SET);
// Read the shader text file into the buffer.
count = fread(buffer, 1, fileSize, filePtr);
if(count != fileSize)
{
return 0;
}
// Close the file.
error = fclose(filePtr);
if(error != 0)
{
return 0;
}
// Null terminate the buffer.
buffer[fileSize] = '\0';
return buffer;
}
void LightShaderClass::OutputShaderErrorMessage(unsigned int shaderId, char* shaderFilename)
{
long count;
int logSize, error;
char* infoLog;
FILE* filePtr;
// Get the size of the string containing the information log for the failed shader compilation message.
m_OpenGLPtr->glGetShaderiv(shaderId, GL_INFO_LOG_LENGTH, &logSize);
// Increment the size by one to handle also the null terminator.
logSize++;
// Create a char buffer to hold the info log.
infoLog = new char[logSize];
// Now retrieve the info log.
m_OpenGLPtr->glGetShaderInfoLog(shaderId, logSize, NULL, infoLog);
// Open a text file to write the error message to.
filePtr = fopen("shader-error.txt", "w");
if(filePtr == NULL)
{
cout << "Error opening shader error message output file." << endl;
return;
}
// Write out the error message.
count = fwrite(infoLog, sizeof(char), logSize, filePtr);
if(count != logSize)
{
cout << "Error writing shader error message output file." << endl;
return;
}
// Close the file.
error = fclose(filePtr);
if(error != 0)
{
cout << "Error closing shader error message output file." << endl;
return;
}
// Notify the user to check the text file for compile errors.
cout << "Error compiling shader. Check shader-error.txt for error message. Shader filename: " << shaderFilename << endl;
return;
}
void LightShaderClass::OutputLinkerErrorMessage(unsigned int programId)
{
long count;
FILE* filePtr;
int logSize, error;
char* infoLog;
// Get the size of the string containing the information log for the failed shader compilation message.
m_OpenGLPtr->glGetProgramiv(programId, GL_INFO_LOG_LENGTH, &logSize);
// Increment the size by one to handle also the null terminator.
logSize++;
// Create a char buffer to hold the info log.
infoLog = new char[logSize];
// Now retrieve the info log.
m_OpenGLPtr->glGetProgramInfoLog(programId, logSize, NULL, infoLog);
// Open a file to write the error message to.
filePtr = fopen("linker-error.txt", "w");
if(filePtr == NULL)
{
cout << "Error opening linker error message output file." << endl;
return;
}
// Write out the error message.
count = fwrite(infoLog, sizeof(char), logSize, filePtr);
if(count != logSize)
{
cout << "Error writing linker error message output file." << endl;
return;
}
// Close the file.
error = fclose(filePtr);
if(error != 0)
{
cout << "Error closing linker error message output file." << endl;
return;
}
// Pop a message up on the screen to notify the user to check the text file for linker errors.
cout << "Error linking shader program. Check linker-error.txt for message." << endl;
return;
}
The SetShaderParameters function now takes in an ambient light color value and then sets the ambientLight uniform variable in the pixel shader.
bool LightShaderClass::SetShaderParameters(float* worldMatrix, float* viewMatrix, float* projectionMatrix, float* lightDirection, float* diffuseLightColor, float* ambientLight)
{
float tpWorldMatrix[16], tpViewMatrix[16], tpProjectionMatrix[16];
int location;
// Transpose the matrices to prepare them for the shader.
m_OpenGLPtr->MatrixTranspose(tpWorldMatrix, worldMatrix);
m_OpenGLPtr->MatrixTranspose(tpViewMatrix, viewMatrix);
m_OpenGLPtr->MatrixTranspose(tpProjectionMatrix, projectionMatrix);
// Install the shader program as part of the current rendering state.
m_OpenGLPtr->glUseProgram(m_shaderProgram);
// Set the world matrix in the vertex shader.
location = m_OpenGLPtr->glGetUniformLocation(m_shaderProgram, "worldMatrix");
if(location == -1)
{
cout << "World matrix not set." << endl;
}
m_OpenGLPtr ->glUniformMatrix4fv(location, 1, false, tpWorldMatrix);
// Set the view matrix in the vertex shader.
location = m_OpenGLPtr->glGetUniformLocation(m_shaderProgram, "viewMatrix");
if(location == -1)
{
cout << "View matrix not set." << endl;
}
m_OpenGLPtr->glUniformMatrix4fv(location, 1, false, tpViewMatrix);
// Set the projection matrix in the vertex shader.
location = m_OpenGLPtr->glGetUniformLocation(m_shaderProgram, "projectionMatrix");
if(location == -1)
{
cout << "Projection matrix not set." << endl;
}
m_OpenGLPtr->glUniformMatrix4fv(location, 1, false, tpProjectionMatrix);
// Set the texture in the pixel shader to use the data from the first texture unit.
location = m_OpenGLPtr->glGetUniformLocation(m_shaderProgram, "shaderTexture");
if(location == -1)
{
cout << "Shader texture not set." << endl;
}
m_OpenGLPtr->glUniform1i(location, 0);
// Set the light direction in the pixel shader.
location = m_OpenGLPtr->glGetUniformLocation(m_shaderProgram, "lightDirection");
if(location == -1)
{
cout << "Light direction not set." << endl;
}
m_OpenGLPtr->glUniform3fv(location, 1, lightDirection);
// Set the diffuse light color in the pixel shader.
location = m_OpenGLPtr->glGetUniformLocation(m_shaderProgram, "diffuseLightColor");
if(location == -1)
{
cout << "Diffuse light color not set." << endl;
}
m_OpenGLPtr->glUniform4fv(location, 1, diffuseLightColor);
The ambient value in the pixel shader is set here.
// Set the ambient light in the pixel shader.
location = m_OpenGLPtr->glGetUniformLocation(m_shaderProgram, "ambientLight");
if(location == -1)
{
cout << "Ambient light not set." << endl;
}
m_OpenGLPtr->glUniform4fv(location, 1, ambientLight);
return true;
}
Lightclass.h
The LightClass was updated for this tutorial to have an ambient component and related helper functions.
////////////////////////////////////////////////////////////////////////////////
// Filename: lightclass.h
////////////////////////////////////////////////////////////////////////////////
#ifndef _LIGHTCLASS_H_
#define _LIGHTCLASS_H_
////////////////////////////////////////////////////////////////////////////////
// Class name: LightClass
////////////////////////////////////////////////////////////////////////////////
class LightClass
{
public:
LightClass();
LightClass(const LightClass&);
~LightClass();
void SetDiffuseColor(float, float, float, float);
void SetDirection(float, float, float);
void SetAmbientLight(float, float, float, float);
void GetDiffuseColor(float*);
void GetDirection(float*);
void GetAmbientLight(float*);
private:
float m_diffuseColor[4];
float m_direction[3];
float m_ambientLight[4];
};
#endif
Lightclass.cpp
////////////////////////////////////////////////////////////////////////////////
// Filename: lightclass.cpp
////////////////////////////////////////////////////////////////////////////////
#include "lightclass.h"
LightClass::LightClass()
{
}
LightClass::LightClass(const LightClass& other)
{
}
LightClass::~LightClass()
{
}
void LightClass::SetDiffuseColor(float red, float green, float blue, float alpha)
{
m_diffuseColor[0] = red;
m_diffuseColor[1] = green;
m_diffuseColor[2] = blue;
m_diffuseColor[3] = alpha;
return;
}
void LightClass::SetDirection(float x, float y, float z)
{
m_direction[0] = x;
m_direction[1] = y;
m_direction[2] = z;
return;
}
void LightClass::SetAmbientLight(float red, float green, float blue, float alpha)
{
m_ambientLight[0] = red;
m_ambientLight[1] = green;
m_ambientLight[2] = blue;
m_ambientLight[3] = alpha;
return;
}
void LightClass::GetDiffuseColor(float* color)
{
color[0] = m_diffuseColor[0];
color[1] = m_diffuseColor[1];
color[2] = m_diffuseColor[2];
color[3] = m_diffuseColor[3];
return;
}
void LightClass::GetDirection(float* direction)
{
direction[0] = m_direction[0];
direction[1] = m_direction[1];
direction[2] = m_direction[2];
return;
}
void LightClass::GetAmbientLight(float* ambient)
{
ambient[0] = m_ambientLight[0];
ambient[1] = m_ambientLight[1];
ambient[2] = m_ambientLight[2];
ambient[3] = m_ambientLight[3];
return;
}
Applicationclass.h
The header for the ApplicationClass hasn't changed for this tutorial.
////////////////////////////////////////////////////////////////////////////////
// Filename: applicationclass.h
////////////////////////////////////////////////////////////////////////////////
#ifndef _APPLICATIONCLASS_H_
#define _APPLICATIONCLASS_H_
/////////////
// GLOBALS //
/////////////
const bool FULL_SCREEN = false;
const bool VSYNC_ENABLED = true;
const float SCREEN_NEAR = 0.3f;
const float SCREEN_DEPTH = 1000.0f;
///////////////////////
// MY CLASS INCLUDES //
///////////////////////
#include "inputclass.h"
#include "openglclass.h"
#include "modelclass.h"
#include "cameraclass.h"
#include "lightshaderclass.h"
#include "lightclass.h"
////////////////////////////////////////////////////////////////////////////////
// Class Name: ApplicationClass
////////////////////////////////////////////////////////////////////////////////
class ApplicationClass
{
public:
ApplicationClass();
ApplicationClass(const ApplicationClass&);
~ApplicationClass();
bool Initialize(Display*, Window, int, int);
void Shutdown();
bool Frame(InputClass*);
private:
bool Render(float);
private:
OpenGLClass* m_OpenGL;
ModelClass* m_Model;
CameraClass* m_Camera;
LightShaderClass* m_LightShader;
LightClass* m_Light;
};
#endif
Applicationclass.cpp
////////////////////////////////////////////////////////////////////////////////
// Filename: applicationclass.cpp
////////////////////////////////////////////////////////////////////////////////
#include "applicationclass.h"
ApplicationClass::ApplicationClass()
{
m_OpenGL = 0;
m_Model = 0;
m_Camera = 0;
m_LightShader = 0;
m_Light = 0;
}
ApplicationClass::ApplicationClass(const ApplicationClass& other)
{
}
ApplicationClass::~ApplicationClass()
{
}
bool ApplicationClass::Initialize(Display* display, Window win, int screenWidth, int screenHeight)
{
char modelFilename[128];
char textureFilename[128];
bool result;
// Create and initialize the OpenGL object.
m_OpenGL = new OpenGLClass;
result = m_OpenGL->Initialize(display, win, screenWidth, screenHeight, SCREEN_NEAR, SCREEN_DEPTH, VSYNC_ENABLED);
if(!result)
{
cout << "Error: Could not initialize the OpenGL object." << endl;
return false;
}
// Create and initialize the camera object.
m_Camera = new CameraClass;
m_Camera->SetPosition(0.0f, 0.0f, -5.0f);
m_Camera->Render();
// Set the file name of the model.
strcpy(modelFilename, "../Engine/data/cube.txt");
// Set the file name of the texture.
strcpy(textureFilename, "../Engine/data/stone01.tga");
// Create and initialize the model object.
m_Model = new ModelClass;
result = m_Model->Initialize(m_OpenGL, modelFilename, textureFilename, false);
if(!result)
{
cout << "Error: Could not initialize the model object." << endl;
return false;
}
// Create and initialize the light shader object.
m_LightShader = new LightShaderClass;
result = m_LightShader->Initialize(m_OpenGL);
if(!result)
{
cout << "Error: Could not initialize the light shader object." << endl;
return false;
}
Set the intensity of the ambient light to 15% white color.
Also set the direction of the light to point down the positive X axis so we can directly see the effect of ambient lighting on the cube.
// Create and initialize the light object.
m_Light = new LightClass;
m_Light->SetDiffuseColor(1.0f, 1.0f, 1.0f, 1.0f);
m_Light->SetDirection(1.0f, 0.0f, 0.0f);
m_Light->SetAmbientLight(0.15f, 0.15f, 0.15f, 1.0f);
return true;
}
void ApplicationClass::Shutdown()
{
// Release the light object.
if(m_Light)
{
delete m_Light;
m_Light = 0;
}
// Release the light shader object.
if(m_LightShader)
{
m_LightShader->Shutdown();
delete m_LightShader;
m_LightShader = 0;
}
// Release the model object.
if(m_Model)
{
m_Model->Shutdown();
delete m_Model;
m_Model = 0;
}
// Release the camera object.
if(m_Camera)
{
delete m_Camera;
m_Camera = 0;
}
// Release the OpenGL object.
if(m_OpenGL)
{
m_OpenGL->Shutdown();
delete m_OpenGL;
m_OpenGL = 0;
}
return;
}
bool ApplicationClass::Frame(InputClass* Input)
{
static float rotation = 360.0f;
bool result;
// Check if the escape key has been pressed, if so quit.
if(Input->IsEscapePressed() == true)
{
return false;
}
// Update the rotation variable each frame.
rotation -= 0.0174532925f * 1.0f;
if(rotation <= 0.0f)
{
rotation += 360.0f;
}
// Render the graphics scene.
result = Render(rotation);
if(!result)
{
return false;
}
return true;
}
In the render function we have added getting the ambient light value from the light object and then setting it in the shader during rendering.
bool ApplicationClass::Render(float rotation)
{
float worldMatrix[16], viewMatrix[16], projectionMatrix[16];
float diffuseLightColor[4], lightDirection[3], ambientLight[4];
bool result;
// Clear the buffers to begin the scene.
m_OpenGL->BeginScene(0.0f, 0.0f, 0.0f, 1.0f);
// Get the world, view, and projection matrices from the opengl and camera objects.
m_OpenGL->GetWorldMatrix(worldMatrix);
m_Camera->GetViewMatrix(viewMatrix);
m_OpenGL->GetProjectionMatrix(projectionMatrix);
// Rotate the world matrix by the rotation value so that the triangle will spin.
m_OpenGL->MatrixRotationY(worldMatrix, rotation);
// Get the light properties.
m_Light->GetDirection(lightDirection);
m_Light->GetDiffuseColor(diffuseLightColor);
m_Light->GetAmbientLight(ambientLight);
// Set the light shader as the current shader program and set the matrices and light values that it will use for rendering.
result = m_LightShader->SetShaderParameters(worldMatrix, viewMatrix, projectionMatrix, lightDirection, diffuseLightColor, ambientLight);
if(!result)
{
return false;
}
// Set the texture for the model in the pixel shader.
m_Model->SetTexture(0);
// Render the model.
m_Model->Render();
// Present the rendered scene to the screen.
m_OpenGL->EndScene();
return true;
}
Summary
With the addition of ambient lighting all surfaces now illuminate to a minimum degree to produce a more realistic lighting effect.
To Do Exercises
1. Recompile the code and ensure you get a spinning cube that is illuminated on the dark side now.
2. Change the ambient light value to (0.0f, 0.0f, 0.0f, 1.0f) to see just the diffuse component again.
Source Code
Source Code and Data Files: gl4linuxtut09_src.tar.gz